数学八年级上册 第2章 一次函数 2.3 《建立一次函数模型》名师教案2 湘教版

首页 > 当代文学 > 文章

数学八年级上册 第2章 一次函数 2.3 《建立一次函数模型》名师教案2 湘教版

八年级数学上册第2章一次函数建立一次函数模型名师教案2湘教版教学目标1使学生通过具体问进一步熟练掌握建立函数模型,并会画出函数图像;2会从函数图像获取信息。

3了解一元一次函数函数与方程组的关系,会用图像法解方程组。

教学重点、难点重点:从函数图像获取信息及函数与方程的关系;难点:体会函数与方程的关系。

教学过程一创设情境,导入新课1已知方程2x+3y=5,用x的代数式表示y,则y=__________.方程2x+3y=5有多少组解呢?y可以看作x的函数吗?为什么?这里x和y是两个变量,当x变化时,y也跟着变化,x取一个值,y有唯一的值和它对应,因此y是x的函数2什么叫方程组的解?函数与方程有着什么联系呢?通过今天的学习,同学们会有深刻的认识。 二合作交流,探究新知1函数与方组动脑筋某一天,小明和小亮同时从家里出发去县城,速度分别是千米/时,4千米/时,小亮家离县城25千米,小明家在小亮去县城的路上,离小亮家5千米。

你能分别写出小明、小亮离小亮的家距离y(千米)与行走时间t(小时)的函数关系吗?在同一坐标系中分别画出上面两个函数关系的图像?你能从图像看出,在出发后几个小时小亮追上小明吗?(交流)你能从图像看出,谁先到达县城吗?对第(1)问引导学生画出图形,然后建立函数关系式对第(3)问先引导学生得出交点横坐标就是小亮追上小明的时间。

然后要求学生对比方程组的解与两个函数图像交点坐标的关系。 从而得出两个函数图像交点的坐标就是这两个函数关系式组成的的方程组的解。 引入图像法的概念利用图像求二元一次方程组的解的方法叫图像法。 2用图像法求方程组的近似解例1用图像法求下述二元一次方程组的近似解。

三应用迁移,巩固提高1函数与方程(组)例2如图,某航空公司托运行李费用y(元)与托运行李重量x(kg)的函数关系为一次函数关系,由图中可知行李的重量只要不超过多少千克,就可以免费托运。